光学字符识别(Optical Character Recognition,以下简称OCR)是指分析图像从而获取文字信息的过程,不少智能手机中的名片扫描软件就有这一功能。2018年11月20日,OCR领域的重要指标——国际文档分析与识别大会(ICDAR)测试集被再次刷新,中国高校及企业包揽ICDAR2015排行榜前五,依次为云从科技(Pixel-Anchor)、南京大学与南京理工大学(PSENet)、旷视科技(Mask Text)、商汤科技(FOTS)、阿里巴巴(IncepText)。
国际文档分析与识别国际会议 (International Conference on Document Analysis and Recognition,ICDAR)是由国际模式识别学会(IAPR)组织的专业会议之一,专注于文本领域的识别与应用。为了提高自然场景的文本检测和识别水平,国际文档分析和识别会议(ICDAR)于2003年设立了鲁棒文本阅读竞赛(“Robust Reading Competitions”)。至今已有来自89个国家的3500多支队伍参与。Google、Microsoft、Amazon、Facebook、北京大学、中国科学技术大学、腾讯、搜狗等均曾参与其中。
鲁棒文本阅读竞赛的测试数据集一直在网上公开,可以随时提交结果,是自然场景文本检测行业中检验算法的测试数据集。ICDAR2015和ICDAR2017 MLT就是其中两个测试子集。
澎湃新闻采访了目前位于ICDAR2015榜单第一名的云从科技。云从科技研究院自身算法工程师李源介绍,CDAR2015和ICDAR2017 MLT是自然场景文本检测领域的权威数据集,“基本上所有文章都会在上面检测”。
CDAR2015榜单(2018年11月20日)。F值代表精度和检出率的调和平均数,也是排名的根据,F值越大,检测结果越优。
他为记者解读了这份榜单,精度(Precision)代表检测结果中正确文本的比例;检出率(recall)则反映被检出文本与图片文本总数的比例,能够体现是否漏检了文本。为了检测算法的效果,需要综合考虑精度和检出率,而F值正好代表精度和检出率的调和平均数,也是排名的根据。
需要注意的是,这里提到的自然场景文本检测并不等同于文本识别,前者不具备识别文字的功能,而是指在图片中检测出文本。
李源表示,2018年11月20日,云从科技在预印本网站arXiv上发表了最新论文成果,该论文提出了用于自然场景文本检测的Pixel-Anchor框架。论文发表之前,他们在国际文档分析与识别大会发布的ICDAR2015和ICDAR2017 MLT数据集上检测了Pixel-Anchor算法,并刷新了ICDAR2015的最佳成绩。
据悉,ICDAR2015是纯英文文本检测数据集,ICDAR2017 MLT则包含了拉丁文、英文、中文、韩文、日文、阿拉伯文等9种文字。云从的Pixel-Anchor算法在ICDAR2017 MLT综合榜单中排名第四,排名前三的三家国外机构没有提交公开论文。
ICDAR2017 MLT综合榜单(2018年11月20日)(带*号表示没有发表公开论文)
除去没有发表公开论文的几家机构,ICDAR2017 MLT数据集前五名及框架名称分别是云从科技(Pixel-Anchor)、阿里巴巴(ATL-cangjie)、商汤科技(FOTS)、旷视科技(EAST++)、南京大学(PSENet_NJU)。
ICDAR2017 MLT的中文榜单中,云从科技排名第一,商汤科技位居第二。
ICDAR2017 MLT中文榜单(2018年11月20日)
自然场景文本检测案例
但相较于传统的文本检测OCR,自然场景中的各种商品、布景或自然场景图片中的文本检测与识别面临着复杂背景干扰、文字的模糊与退化、不可预测的光照、字体的多样性、垂直文本、倾斜文本等挑战。与针对高质量文档图像的传统OCR相比,自然场景文本检测能在更宽泛的领域中应用,例如照片分析、车牌识别,图片广告过滤,场景理解,商品识别,街景定位,票据识别等。
新闻推荐
新华社北京电(记者吴雨)根据中国人民银行19日发布的数据,第三季度,全国共办理非现金支付业务579.85亿笔,金额925.46万亿元,同比...